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Abstract

In this paper, 3-D second-order plastic-hinge analysis accounting for lateral torsional buckling is developed. This

analysis accounts for material and geometric nonlinearities of the structural system and its component members.

Moreover, the problem associated with conventional second-order plastic-hinge analyses, which do not consider the

degradation of the flexural strength caused by lateral torsional buckling, is overcome. Efficient ways of assessing steel

frame behavior including gradual yielding associated with residual stresses and flexure, second-order effect, and geo-

metric imperfections are presented. In this study, a model consisting of the unbraced length and cross-section shape is

used to account for lateral torsional buckling. The proposed analysis is verified by the comparison of the other analyses

and load and resistance factor design results. A case study shows that lateral torsional buckling is a very crucial element

to be considered in second-order plastic-hinge analysis. The proposed analysis is shown to be an efficient, reliable tool

ready to be implemented into design practice. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the current engineering practice, the interaction between the structural system and its component
members is represented by the effective length factor. The effective length method generally provides a good
design of framed structures. However, despite its popular use in the past and present as a basis for design,
the approach has its major limitations. The first of these is that it does not give an accurate indication of the
factor against failure, because it does not consider the interaction of strength and stability between the
member and structural system in a direct manner. It is well-recognized fact that the actual failure mode of
the structural system often does not have any resemblance whatsoever to the elastic buckling mode of the
structural system that is the basis for the determination of the effective length factor K. The second and
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Nomenclature

A, L area and length of beam-column element
Cb equivalent moment factor
Cw warping constant
E modulus of elasticity
Et CRC (column research council) tangent modulus
Fr compressive residual stress
Fyw yield stress of web
Fyf yield stress of flange
G shear modulus of elasticity of steel
Iy , Iz moment of inertia with respect to y- and z-axes
J torsional constant
kc, ks coefficients accounting for situation where a large number of columns in a story and stories in a

frame would reduce the total magnitude of geometric imperfections
kiiy , kijy , kjjy stiffness accounting for gA, gB with respect to y-axis
kiiz, kijz, kjjz stiffness accounting for gA, gB with respect to z-axis
Lb unbraced length of the member in the out-of-plane bending
Lc length of column accounting for geometric imperfection
Lp limiting unbraced length for full plastic bending capacity
Lr limiting unbraced length of inelastic lateral torsional buckling
MA absolute value of moment at quarter point of the unbraced segment, sum of moments in sway

and non-sway cases
MB absolute value of moment at centerline of the unbraced segment, sum of moments in sway and

non-sway cases
MC absolute value of moment at three quarter point of the unbraced segment, sum of moments in

sway and non-sway cases
Mmax absolute value of maximum moment in the unbraced segment, sum of moments in sway and

non-sway cases
Mn lateral torsional buckling strength
Mr FLSx, where FL is smaller of (Fyf � Fr) or Fyw
My , Mz second-order bending moment with respect to y- and z-axes
Myp, Mzp plastic moment capacity with respect to y- and z-axes
Mp plastic moment capacity
MyA, MyB, MzA, MzB end moments with respect to y- and z-axes
P second-order axial force or axial force
Py squash load
Pp axially ultimate load
r1, r2 factors which account for the length and number of columns
ry radius of gyration about y-axis
Sx section modulus about x-axis
S1, S2, S3, S4 stability functions with respect to y- and z-axes
T torsional force
a force-state parameter
d axial shortening
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perhaps the most serious limitation is probably the rationale of the current two-stage process in design:
elastic analysis is used to determine the forces acting on each member of a structural system, whereas
inelastic analysis is used to determine the strength of each member treated as an isolated member. There is
no verification of the compatibility between the isolated member and the member as part of a frame. The
individual member strength equations as specified in specifications are unconcerned with system compat-
ibility. As a result, there is no explicit guarantee that all members will sustain their design loads under the
geometric configuration imposed by the framework.
In order to overcome the difficulties of the conventional approach, second-order plastic-hinge analysis

should be directly performed. With the current available computing technology with advancement in
computer hardware and software, it is feasible to employ second-order plastic-hinge analysis techniques for
direct frame design. Most of second-order plastic analyses can be categorized into one of two types: (1)
plastic zone; or (2) plastic hinge based on the degree of refinements used to represent yielding. The plastic-
zone method uses the highest refinements while the elastic–plastic hinge method allows for significant
simplifications. The typical load–displacements of the plastic analyses are illustrated in Fig. 1. One of the
second-order plastic-hinge analyses called the plastic-zone method discretizes frame members into several
finite elements. Also the cross-section of each finite element is further subdivided into many fibers (Vogel,
1985; White, 1985; Clarke et al., 1992). Although the plastic-zone solution is known as an ‘‘exact solution’’,
it is yet to be used for practical design purposes. The applicability of the method is limited by its complexity
requiring intensive computational time and cost. The real challenge in our endeavor is to make this type of
analysis competitive in present construction engineering practices.
A more simple and efficient way to represent inelasticity in frames is the second-order plastic-hinge

method. Until now, several second-order plastic-hinge analyses for space structures were developed by
Ziemian et al. (1992), Prakash and Powell (1993), Liew and Tang (1998), and Kim et al. (2001). The benefit
of the second-order plastic-hinge analyses is that they are efficient and sufficiently accurate for the as-
sessment of strength and stability of structural systems and their component members.

g, gA, gB stiffness degradation function at element end A and B, respectively
hyA, hyB, hzA, hzB the joint rotations
/ the angle of twist

Fig. 1. Load–displacement of plastic analyses.
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These conventional 3-D second-order plastic-hinge analyses assume lateral torsional buckling to be pre-
vented by adequate lateral bracing, and do not account for the degradation of the flexural strength caused by
lateral torsional buckling. Since the sections of the structures are not always provided with a sufficient lateral
support, the analysis should be improved to consider lateral torsional buckling. When the conventional 3-D
second-order plastic-hinge analyses account for lateral torsional buckling, it must be a considerable con-
tribution in present engineering practices. The objective of this paper is to achieve the accuracy of a plastic-
zone solution with the ease of the plastic-hinge model, in capturing the effect of lateral torsional buckling.

2. 3-D second-order plastic-hinge analysis

2.1. Stability functions accounting for second-order effect

To capture second-order (large displacement) effects, stability functions are used to minimize modeling
and solution time. Generally only one or two elements are needed per a member. The simplified stability
functions for the two-dimensional beam-column element were reported by Chen and Lui (1992). The force–
displacement equation using the stability functions may be extended for three-dimensional beam-column
element as

P
MyA

MyB

MzA

MzB

T

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

¼

EA
L 0 0 0 0 0

0 S1
EIy
L S2

EIy
L 0 0 0

0 S2
EIy
L S1

EIy
L 0 0 0

0 0 0 S3 EIz
L S4 EIz

L 0

0 0 0 S4 EIz
L S3 EIz

L 0

0 0 0 0 0 GJ
L

2
666666664

3
777777775

d

hyA

hyB

hzA

hzB

/

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð1Þ

where P is the axial force; MyA, MyB, MzA, MzB, the end moments with respect to y- and z-axes; T, the
torsional force; d, the axial shortening; hyA, hyB, hzA, hzB, the joint rotations; /, the angle of twist; S1, S2, S3,
S4, the stability functions with respect to y- and z-axes; A, L, the area and length of beam-column element;
Iy , Iz, the moment of inertia with respect to y- and z-axes; E, the modulus of elasticity; G, the shear modulus
of elasticity; J , the torsional constant.
The stability functions given by Eq. (1) may be written as

S1 ¼

p ffiffiffiffiffiqy
p

sinðp ffiffiffiffiffiqy
p Þ � p2qy cosðp

ffiffiffiffiffiqy
p Þ

2� 2 cosðp ffiffiffiffiffiqy
p Þ � p ffiffiffiffiffiqy

p
sinðp ffiffiffiffiffiqy

p Þ if P < 0

p2qy coshðp
ffiffiffiffiffiqy

p Þ � p ffiffiffiffiffiqy
p

sinhðp ffiffiffiffiffiqy
p Þ

2� 2 coshðp ffiffiffiffiffiqy
p Þ þ p ffiffiffiffiffiqy

p
sinhðp ffiffiffiffiffiqy

p Þ if P > 0

8>>><
>>>:

ð2aÞ

S2 ¼

p2qy � p ffiffiffiffiffiqy
p

sinðp ffiffiffiffiffiqy
p Þ

2� 2 cosðp ffiffiffiffiffiqy
p Þ � p ffiffiffiffiffiqy

p
sinðp ffiffiffiffiffiqy

p Þ if P < 0

p ffiffiffiffiffiqy
p

sinhðp ffiffiffiffiffiqy
p Þ � p2qy

2� 2 coshðp ffiffiffiffiffiqy
p Þ þ p ffiffiffiffiffiqy

p
sinðp ffiffiffiffiffiqy

p Þ if P > 0

8>>>><
>>>>:

ð2bÞ

S3 ¼

p
ffiffiffiffiffi
qz

p
sinðp ffiffiffiffiffi

qz
p Þ � p2qz cosðp

ffiffiffiffiffi
qz

p Þ
2� 2 cosðp ffiffiffiffiffi

qz
p Þ � p

ffiffiffiffiffi
qz

p
sinðp ffiffiffiffiffi

qz
p Þ if P < 0

p2q coshðp ffiffiffiffiffi
qz

p Þ � p
ffiffiffiffiffi
qz

p
sinhðp ffiffiffiffiffi

qz
p Þ

2� 2 coshðp ffiffiffiffiffi
qz

p Þ þ p
ffiffiffiffiffi
qz

p
sinhðp ffiffiffiffiffi

qz
p Þ if P > 0

8>>><
>>>:

ð2cÞ
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S4 ¼

p2qz � p
ffiffiffiffiffi
qz

p
sinðp ffiffiffiffiffi

qz
p Þ

2� 2 cosðp ffiffiffiffiffi
qz

p Þ � p
ffiffiffiffiffi
qz

p
sinðp ffiffiffiffiffi

qz
p Þ if P < 0

p
ffiffiffiffiffi
qz

p
sinhðp ffiffiffiffiffi

qz
p Þ � p2qz

2� 2 coshðp ffiffiffiffiffi
qz

p Þ þ p
ffiffiffiffiffi
qz

p
sinðp ffiffiffiffiffi

qz
p Þ if P > 0

8>>><
>>>:

ð2dÞ

where qy ¼ P=ðp2EIy=L2Þ, qz ¼ P=ðp2EIz=L2Þ, and P is positive in tension.
The numerical solutions obtained from Eqs. (2a)–(2d) are indeterminate when the axial force is zero. To

circumvent this problem and to avoid the use of different expressions for S1, S2, S3, and S4 for a different sign
of axial forces, Lui and Chen (1986) have proposed a set of expressions that make use of power-series
expansions to approximate the stability functions. The power-series expressions have been shown to
converge to a high degree of accuracy within the first 10 terms of the series expansions. Alternatively, if the
axial force in the member falls within the range �2:06q6 2:0, the following simplified expressions may be
used to closely approximate the stability functions:

S1 ¼ 4þ
2p2qy

15
�
ð0:01qy þ 0:543Þq2y

4þ qy
�
ð0:004qy þ 0:285Þq2y

8:183þ qy
ð3aÞ

S2 ¼ 2�
p2qy

30
þ
ð0:01qy þ 0:543Þq2y

4þ qy
�
ð0:004qy þ 0:285Þq2y

8:183þ qy
ð3bÞ

S3 ¼ 4þ
2p2qz

15
� ð0:01qz þ 0:543Þq2z

4þ qz
� ð0:004qz þ 0:285Þq2z

8:183þ qz
ð3cÞ

S4 ¼ 2�
p2qz

30
þ ð0:01qz þ 0:543Þq2z

4þ qz
� ð0:004qz þ 0:285Þq2z

8:183þ qz
ð3dÞ

Eqs. (3a)–(3d) are applicable for members in tension (positive P ) and compression (negative P ). For most
practical applications, Eqs. (3a)–(3d) give an excellent correlation to the exact expressions given by Eqs.
(2a)–(2d). However, for q other than the range of �2:06 q6 2:0, the conventional stability functions (Eqs.
(2a)–(2d)) should be used. The stability function approach uses only one element per member and main-
tains accuracy in the element stiffness terms and in the recovery of element end forces for all ranges of axial
loads. In this formulation, all members are assumed to be adequately braced to prevent out-of-plane
buckling, and their cross-sections are compact.

2.2. Plastic strength of cross-section

Based on the AISC-load and resistance factor design (LRFD) bilinear interaction equations, a cross-
section’s plastic strength can be taken as (AISC, 1993)

P
Pp

����
����þ 89 My

Myp

����
����þ 89 Mz

Mzp

����
���� ¼ 1:0 for

P
Pp

P 0:2 ð4aÞ

P
2Pp

����
����þ My

Myp

����
����þ Mz

Mzp

����
���� ¼ 1:0 for

P
Pp

< 0:2 ð4bÞ

where P is the second-order axial force; Pp, the axially ultimate load; My , Mz, the second-order bending
moment with respect to y- and z-axes; Myp, Mzp, the plastic moment capacity with respect to y- and z-axes.
The strain is not involved in this analysis. Once the member forces get to the full plastic surface given by

Eqs. (4a) and (4b), they are assumed to move on the plastic surface at the following loading step. That is,
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once the axial force of a member increases at the following loading step, the bending moment is adjusted
to be reduced. Thus, the member forces do not violate the yield surface. This approach has been used by
several researchers (Chen and Kim, 1997; Kim and Chen, 1996a, 1996b; Liew et al., 1993).

2.3. Model for gradual yielding

A lot of meshes are necessary in order to trace the inelastic stress–strain relationship of each fine element
(Ilyushin, 1956). The approach is widely used in the commercial softwares including ABAQUS, ANSYS,
and etc. Those softwares are good at research purpose but not at design use. Since the purpose of this paper
is to develop a practical tool for at design use, the plasticity is approximated by using the column research
council (CRC) and the parabolic function whose values are determined by member forces rather than by
stress and strain relationship of each mesh. Although this approximation is used, the method predicts the
system strength with a reasonable accuracy as shown in the verification study. This approach has been
developed and used by many researchers (Liew and Tang, 1998; Chen and Kim, 1997; Kim and Chen,
1996a, 1996b; Clarke et al., 1992; Orbison 1982).

2.3.1. Column research council tangent modulus model associated with residual stresses
The CRC tangent modulus concept is used to account for gradual yielding (due to residual stresses)

along the length of axially loaded members between plastic hinges (Chen and Lui, 1992). The elastic
modulus E, instead of moment of inertia I , is hereby reduced. Although it is really the elastic portion of the
cross-section (thus I) that is being reduced, changing the elastic modulus is easier than changing the mo-
ment of inertia for different sections. The rate of reduction in stiffness is different in the weak and strong
directions, but this is not considered since the dramatic degradation of weak-axis stiffness is compensated
for by the substantial weak-axis’ plastic strength (Chen and Kim, 1997). This simplification makes the
present methods practical. From Chen and Lui (1992), the CRC Et is written as

Et ¼ 1:0E for P 6 0:5Py ð5aÞ

Et ¼ 4
P
Py

E 1

�
� P
Py

�
for P > 0:5Py ð5bÞ

2.3.2. Parabolic function for gradual yielding due to flexure
The tangent modulus model is suitable for the member subjected to axial force, but not adequate for

cases of both axial force and bending moment. A gradual stiffness degradation model for a plastic hinge is
required to represent the partial plastification effects associated with bending. When softening plastic hinges
are active at both ends of an element, the force–deflection equation may be expressed as

P
MyA

MyB

MzA

MzB

T

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

EtA
L 0 0 0 0 0
0 kiiy kijy 0 0 0
0 kijy kjjy 0 0 0
0 0 0 kiiz kijz 0
0 0 0 kijz kjjz 0
0 0 0 0 0 gAgB

GJ
L

2
6666664

3
7777775

d
hyA

hyB

hzA

hzB

/

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð6Þ

where

kiiy ¼ gA S1

�
� S22

S1
ð1� gBÞ

�
EtIy
L

ð7aÞ
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kijy ¼ gAgBS2
EtIy
L

ð7bÞ

kjjy ¼ gB S1

�
� S22

S1
ð1� gAÞ

�
EtIy
L

ð7cÞ

kiiz ¼ gA S3

�
� S24

S3
ð1� gBÞ

�
EtIz
L

ð7dÞ

kijz ¼ gAgBS4
EtIz
L

ð7eÞ

kjjz ¼ gB S3

�
� S24

S3
ð1� gAÞ

�
EtIz
L

ð7fÞ

The terms gA and gB are scalar parameters that allow for gradual inelastic stiffness reduction of the element
associated with plastification at end A and B. This term is equal to 1.0 when the element is elastic, and zero
when a plastic hinge is formed. The parameter g is assumed to vary according to the parabolic function:

g ¼ 1:0 for a6 0:5 ð8aÞ
g ¼ 4að1� aÞ for a > 0:5 ð8bÞ

where a is a force-state parameter that measures the magnitude of axial force and bending moment at the
element end. Herein, a is the function of the AISC-LRFD interaction equations written in Eqs. (9a) and
(9b).

a ¼ P
Pp

þ 8
9

My

Myp
þ 8
9

Mz

Mzp
for

P
Pp

P
2

9

My

Myp
þ 2
9

Mz

Mzp
ð9aÞ

a ¼ P
2Pp

þ My

Myp
þ Mz

Mzp
for

P
Pp

<
2

9

My

Myp
þ 2
9

Mz

Mzp
ð9bÞ

Initial yielding is assumed to occur based on a yield surface that has the same shape as the full plas-
tification surface and with the force-state parameter denoted as a0 ¼ 0:5. If the forces change so the force
point moves inside or along the initial yield surface, the element is assumed to remain fully elastic with no
stiffness reduction. If the force point moves beyond the initial yield surface, the element stiffness is reduced
to account for the effect of plastification at the element end.
The element force–displacement relationship from Eq. (6) may be symbolically written as

ffeg ¼ ½Ke
fdeg ð10Þ

in which ffeg and fdeg are the element end force and displacement arrays, and ½Ke
 is the element tangent
stiffness matrix.
To account for transverse shear deformation effects in a beam-column element, the stiffness matrix may

be modified as

P
MyA

MyB

MzA

MzB

T

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

EtA
L 0 0 0 0 0
0 Ciiy Cijy 0 0 0
0 Cijy Cjjy 0 0 0
0 0 0 Ciiz Cijz 0
0 0 0 Cijz Cjjz 0
0 0 0 0 0 gAgB

GJ
L

2
6666664

3
7777775

d
hyA

hyB

hzA

hzB

/

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð11Þ
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where

Ciiy ¼
kiiykjjy � k2ijy þ kiiyAszGL

kiiy þ kjjy þ 2kijy þ AszGL
ð12aÞ

Cijy ¼
�kiiykjjy þ k2ijy þ kijyAszGL

kiiy þ kjjy þ 2kijy þ AszGL
ð12bÞ

Cjjy ¼
kiiykjjy � k2ijy þ kjjyAszGL

kiiy þ kjjy þ 2kijy þ AszGL
ð12cÞ

Ciiz ¼
kiizkjjz � k2ijz þ kiizAsyGL

kiiz þ kjjz þ 2kijz þ AsyGL
ð12dÞ

Cijz ¼
�kiizkjjz þ k2ijz þ kijzAsyGL

kiiz þ kjjz þ 2kijz þ AsyGL
ð12eÞ

Cjjz ¼
kiizkjjz � k2ijz þ kjjzAsyGL

kiiz þ kjjz þ 2kijz þ AsyGL
ð12fÞ

2.4. Stability analysis of structural system

The end forces and end displacements used in Eq. (10) are shown in Fig. 2(a). The sign convention
for the positive directions of element end forces and end displacements of a frame member is shown in

Fig. 2. Element end forces and displacements notation.
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Fig. 2(b). By comparing the two figures, we can express the equilibrium and kinematic relationships in
symbolic form as

fnf g ¼ T½ 
T6�12 fef g ð13aÞ

def g ¼ T½ 
6�12 dLf g ð13bÞ

ffng and fdLg are the end force and displacement vectors of a frame member expressed as

ffngT ¼ f rn1 rn2 rn3 rn4 rn5 rn6 rn7 rn8 rn9 rn10 rn11 rn12 g ð14aÞ

fdLgT ¼ f d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 g ð14bÞ

ffeg and fdeg are the end force and displacement vectors in Eq. (10). ½T 
6�12 is a transformation matrix
written as

T½ 
6�12 ¼

�1 0 0 0 0 0 1 0 0 0 0 0

0 0 � 1
L 0 1 0 0 0 1

L 0 0 0

0 0 � 1
L 0 0 0 0 0 1

L 0 1 0

0 1
L 0 0 0 1 0 � 1

L 0 0 0 0

0 1
L 0 0 0 0 0 � 1

L 0 0 0 1

0 0 0 1 0 0 0 0 0 �1 0 0

2
6666666664

3
7777777775

ð15Þ

Using the transformation matrix by equilibrium and kinematic relations, the force–displacement rela-
tionship of a frame member may be written as

fnf g ¼ Kn½ 
 dLf g ð16Þ

½Kn
 is the element stiffness matrix expressed as

½Kn
12�12 ¼ ½T 
T6�12½Ke
6�6½T 
6�12 ð17Þ
Eq. (17) can be subgrouped as

Kn½ 
12�12 ¼
Kn½ 
1 Kn½ 
2
Kn½ 
T2 Kn½ 
3

� �
ð18Þ

where

Kn½ 
1 ¼

a 0 0 0 0 0
0 b 0 0 0 c
0 0 d 0 �e 0
0 0 0 f 0 0
0 0 �e 0 g 0
0 c 0 0 0 h

2
6666664

3
7777775

ð19aÞ

Kn½ 
2 ¼

�a 0 0 0 0 0
0 �b 0 0 0 c
0 0 �d 0 �e 0
0 0 0 �f 0 0
0 0 e 0 i 0
0 �c 0 0 0 j

2
6666664

3
7777775

ð19bÞ
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Kn½ 
3 ¼

a 0 0 0 0 0
0 b 0 0 0 �c
0 0 d 0 e 0
0 0 0 f 0 0
0 0 e 0 m 0
0 c 0 0 0 n

2
6666664

3
7777775

ð19cÞ

where

a ¼ EtA
L

; b ¼ Ciiz þ 2Cijz þ Cjjz

L2
; c ¼ Ciiz þ Cijz

L
; d ¼ Ciiy þ 2Cijy þ Cjjy

L2
; e ¼ Ciiy þ Cijy

L
;

f ¼ GJ
L

; g ¼ Ciiy ; h ¼ Ciiz; i ¼ Cijy ; j ¼ Cijz; m ¼ Cjjy ; n ¼ Cjjz ð20Þ

Eq. (18) is used to enforce no sidesway in the member. If the member is permitted to sway, an additional
axial and shear forces will be induced in the member. We can relate this additional axial and shear forces
due to a member sway to the member end displacements as

fsf g ¼ Ks½ 
 dLf g ð21Þ
where ffsg, fdLg, and ½Ks
 are end force vector, end displacement vector, and the element stiffness matrix.
They may be written as

ffsgT ¼ f rs1 rs2 rs3 rs4 rs5 rs6 rs7 rs8 rs9 rs10 rs11 rs12 g ð22aÞ

fdLgT ¼ f d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 g ð22bÞ

Ks½ 
12�12 ¼
Ks½ 
 � Ks½ 


� Ks½ 
T Ks½ 


� �
ð22cÞ

where

Ks½ 
 ¼

0 a �b 0 0 0
a c 0 0 0 0
�b 0 c 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

2
6666664

3
7777775

ð23Þ

and

a ¼ MzA þMzB

L2
; b ¼ MyA þMyB

L2
; c ¼ P

L
ð24Þ

By combining Eqs. (16) and (21), we obtain the general beam-column element force–displacement re-
lationship as

fLf g ¼ K½ 
local dLf g ð25Þ

where

fLf g ¼ fnf g þ fsf g ð26Þ

K½ 
local ¼ Kn½ 
 þ Ks½ 
 ð27Þ
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We need to transform the elemental stiffness matrix with respect to the elemental coordinate system to
the global coordinate system before combining the stiffnesses to create the structural stiffness matrix. The
basic form of this transformation is shown in Eq. (28).

K½ 
global ¼ b½ 
T K½ 
local b½ 
 ð28Þ

The elements of ½b
 matrix were the direction cosines of the force and displacement vectors. For the force
and displacement vectors. For the three-dimensional frame element the ½b
 matrix expands to

b½ 
 ¼

L½ 
 0 0 0
0 L½ 
 0 0
0 0 L½ 
 0
0 0 0 L½ 


2
664

3
775 ð29Þ

where each ½L
 matrix is the 3� 3 matrix of direction cosines.

2.5. Geometric imperfection modeling

2.5.1. Braced frame
The proposed analysis implicitly accounts for the effects of both residual stresses and spread of yielded

zones. To this end, proposed analysis may be regarded as equivalent to the plastic-zone analysis. As a
result, geometric imperfections are necessary only to consider fabrication error. For braced frames, member
out-of-straightness, rather than frame out-of-plumbness, needs to be used for geometric imperfections. This
is because the P–D effect due to the frame out-of-plumbness is diminished by braces. The ECCS (1984,
1991), AS (1990), and CSA (1989, 1994) specifications recommend an initial crookedness of column equal
to 1/1000 times the column length. The AISC code recommends the same maximum fabrication tolerance
of Lc=1000 for member out-of-straightness. In this study, a geometric imperfection of Lc=1000 is adopted.
The ECCS, AS, and CSA specifications recommend the out-of-straightness varying sinusoidally with a

maximum in-plane deflection at the mid-height. They do not, however, describe how the sinusoidal im-
perfection should be modeled in analysis. Ideally, many elements are needed to model the sinusoidal out-of-
straightness of a beam-column member, but it is not practical. In this study, two elements with a maximum
initial deflection at the mid-height of a member are found adequate for capturing the imperfection. Fig. 3
shows the out-of-straightness modeling for a braced beam-column member. It may be observed that the
out-of-plumbness is equal to 1/500 when the half segment of the member is considered. This value is

Fig. 3. Explicit imperfection modeling of braced member.
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identical to that of sway frames as discussed in recent papers by Kim and Chen (1996a, 1996b). Thus, it
may be stated that the imperfection values are essentially identical for both sway and braced frames.

2.5.2. Unbraced frame
Referring to the European Convention for Constructional Steelwork (ECCS, 1984, 1991), an out-of-

plumbness of a column equal to 1/200 times the column height is recommended for the elastic plastic-hinge
analysis. For multi-story and multi-bay frames, the geometric imperfections may be reduced to 1/200kcks
since all columns in buildings may not lean in the same direction. The coefficients, kc and ks account for the
situation where a large number of columns in a story and stories in a frame would reduce the total mag-
nitude of geometric imperfections. According to the ECCS (1984, 1991), the member initial out-of-
straightness should be modeled at the same time with the initial out-of-plumbness if the column parameter
L

ffiffiffiffiffiffiffiffiffiffiffiffi
Pu=EI

p
is larger than 1.6. This may be necessary to consider residual stresses and possible member in-

stability effects for highly compressed slender columns, however, the magnitude of the imperfection is not
specified in the ECCS (1984, 1991).
Since plastic-zone analysis accounts for both residual stresses and the spread of yielding, only geometric

imperfections for erection tolerances need be included in the analysis. The ECCS recommends the out-of-
plumbness of columns equal to 1/300r1r2 times the column height where r1 and r2 are factors which account
for the length and number of columns, respectively. For the plastic-zone analysis, the ECCS does not
specify the requirement of the initial out-of-straightness to be modeled in addition to the out-of-plumbness
when the column parameter L

ffiffiffiffiffiffiffiffiffiffiffiffi
Pu=EI

p
is larger than 1.6, since the plastic-zone analysis already includes

residual stresses and spread of yielding in its formulation.
Since proposed analysis implicitly accounts for both residual stresses and the spread of yielding, it may

be considered equivalent to the plastic-zone analysis. Thus, modeling the out-of-plumbness for erection
tolerances is used here without the out-of-straightness for the column, regardless of the value of the column
parameter, so that the same ultimate strength can be predicted for mathematically identical braced and
unbraced members. This simplification enables us to use the proposed methods easily with consistent
imperfection modeling. The Canadian Standard (1989, 1994) and the AISC Code of Standard Practice
(AISC, 1994) set the limit of erection out-of-plumbness Lc=500. The maximum erection tolerances in the
AISC are limited to 1 in. toward the exterior of buildings and 2 in. toward the interior of buildings less than
20 stories. Considering the maximum permitted average lean of 1.5 in. in the same direction of a story, the
geometric imperfection of Lc=500 can be used for buildings up to six stories with each story approximately
10 feet high. For taller buildings, this imperfection value of Lc=500 is conservative since the accumulated
geometric imperfection calculated by 1/500 times building height is greater than the maximum permitted
erection tolerance.
In this study, we shall use Lc=500 for the out-of-plumbness without any modification because the system

strength is often governed by a weak story which has an out-of-plumbness equal to Lc=500 (Maleck et al.,
1995) and a constant imperfection has the benefit of simplicity in practical design. The explicit geometric
imperfection modeling for an unbraced frame is illustrated in Fig. 4.

3. Model to account for lateral torsional buckling

When a member is bent about its major axis, out-of-plane motion consisting of bending and twisting will
occur as the applied load increases. The out-of-plane motion results in the degradation of the flexural
strength and stiffness about its major axis. The conventional 3-D second-order plastic-hinge analyses,
however, do not consider the degradation of the flexural strength caused by the lateral torsional buckling,
assuming the lateral torsional motion to be prevented by adequate lateral bracing. The analysis should be

2120 S.-E. Kim et al. / International Journal of Solids and Structures 39 (2002) 2109–2128



improved to consider lateral torsional buckling, since the real structures are not always provided with a
sufficient lateral support.
A theoretical model was developed for the inelastic lateral torsional buckling of beams under uniform

moment (Kitipornchai and Trahair, 1974). The inelastic lateral torsional buckling of steel I-beams under
moment gradient was studied theoretically (Kitipornchai and Trahair, 1975). A number of full-scale tests
on steel I-beams were made by Hechtman et al. (1995), White (1960), and Sawer (1961) among many others.
The unbraced length, the cross-sectional shape, and the material property are the important factors

influencing the lateral torsional buckling strength. Since the 3-D second-order plastic-hinge analysis uses
only a line model to represent an element, a rigorous model using volume elements to account for lateral
torsional effect is not applicable to this analysis. In this study, the practical LRFD equation among Rondal
and Maquoi (1979), ECCS (1991), and AISC (1994) is used to determine the lateral torsional buckling
strength.
For I-shaped members subjected to bending about the strong-axis, Mn is determined by:

Mn ¼ Mp for Lb6 Lp ð30aÞ

Mn ¼ Cb Mp

�
� ðMp �MrÞ

ðLb � LpÞ
ðLr � LpÞ

�
6Mp for Lp < Lb6 Lr ð30bÞ

Mn ¼ Cb
p
Lb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIyGJ þ pE

Lb

� �2
IyCw

s
6CbMr for Lb > Lr ð30cÞ

where Mp is the plastic moment¼ FyZ, where Z is plastic section modulus; Mr, the FLSx, where FL is smaller
of (Fyf � Fr) or Fyw; Fyf , the yield stress of flange; Fyw, the yield stress of web; Fr, the compressive resid-
ual stress in flange; 10 ksi for rolled shape, 16.5 ksi for welded shape; Lb, the unbraced length of the
member in the out-of-plane bending; Lp, the limiting unbraced length for full plastic bending capacity; Lr,
the limiting unbraced length of inelastic lateral torsional buckling; Iy , the moment of inertia about weak
axis; G, the shear modulus of elasticity of steel (11,200 ksi); J , the torsional constant; Cw, the warping
constant.

Fig. 4. Explicit imperfection modeling of unbraced frame.
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The limiting unbraced plastic and elastic lengths (Lp and Lr) shall be determined respectively as follows:

Lp ¼
300ryffiffiffiffiffiffi

Fyf
p ð31Þ

Lr ¼
ryX1
FL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2F 2L

qr
ð32Þ

where

X1 ¼
p
Sx

ffiffiffiffiffiffiffiffiffiffiffiffi
EGJA
2

r

X2 ¼ 4
Cw
Iy

Sx
GJ

� �2
Sx is the section modulus about major axis.
It is noted that the lateral torsional buckling limit state is applicable to members subject to strong-axis

bending not weak-axis bending, square or circular shapes. The term Mp, Mr, Lp, and Lr may be found with
the aid of beam design table in the AISC-LRFD specification without using Eqs. (9a)–(11) described above.
Cb is a modification for non-uniform moment diagrams. The physical meaning of Cb is that it represents the
amount of an increase in load-carrying capacity when compared with the critical uniform loading case. An
empirical formula for Cb is expressed as (AISC, 1993)

Cb ¼
12:5Mmax

2:5Mmax þ 3MA þ 4MB þ 3MC

ð33Þ

where Mmax is the absolute value of maximum moment in the unbraced segment, sum of moments in sway
and non-sway cases; MA, the absolute value of moment at quarter point of the unbraced segment, sum of
moments in sway and non-sway cases; MB, the absolute value of moment at centerline of the unbraced
segment, sum of moments in sway and non-sway cases; MC, the absolute value of moment at three quarter
point of the unbraced segment, sum of moments in sway and non-sway cases.
When Lb6 Lp, the full plastic moment will be developed in the section. When Lp < Lb6 Lr, inelastic

lateral buckling may occur. When Lb > Lr, elastic lateral buckling may occur. The plastic moment Mp of
Eqs. (4a) and (4b) is replaced with the lateral torsional buckling strength Mn determined by Eqs. (30a)–
(30c). Eqs. (4a) and (4b) are revised as

P
Pp

����
����þ 89 My

Myp

����
����þ 89 Mz

Mn

����
���� ¼ 1:0 for

P
Pp

P 0:2 ð34aÞ

P
2Pp

����
����þ My

Myp

����
����þ Mz

Mn

����
���� ¼ 1:0 for

P
Pp

< 0:2 ð34bÞ

Using Eqs. (34a) and (34b) in the 3-D second-order plastic-hinge analysis program, the effect of lateral
torsional buckling can be considered. The proposed analysis allows the inelastic moment redistribution in
the structural system. Thus, adequate rotational capacity is required. This is achieved when members are
adequately braced and their cross-sections are compact. When a member without adequate braces fails by
lateral torsional buckling, the moment of inertia of the member is assumed to be zero so that the inelastic
moment redistribution is not allowed for the member. This approximation is deemed appropriate for
tracing the nonlinear behavior of the frame including lateral torsional buckling effect, since the proposed
analysis aims to determine only the ultimate strength of the whole structural system rather than to examine
the lateral torsional buckling behavior of a component member.
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4. Numerical implementation

Both the simple incremental and the incremental–iteration method are available in the analysis. In the
simple incremental method, the applied load increment is automatically reduced to minimize the error when
the change in the element stiffness parameter (Dg) exceeds a defined tolerance. In the incremental–iteration
load approach, the structure is assumed to behavior linearly at a particular cycle of calculation. Because of
the linearization process, equilibrium may be violated and the external force may not always balance the
internal force. This unbalance force must be reapplied to the structure. Then, the solution is obtained by
iteration process until equilibrium is satisfied. As the stability limit point is approached in the analysis,
convergence of the solution may be slow. To facilitate convergence, the applied load increment is auto-
matically reduced. If the structure system is unstable, the determinant of stiffness matrix becomes to either
zero or negative value and the program writes ‘‘structure unstable’’.

5. Verification study

Verifications are performed for the following two cases: (1) Orbison’s six-story frame ignoring lateral
torsional buckling; (2) a single-story frame comprising lateral torsional buckling. The first is to verify how
the proposed analysis predicts well geometric and material nonlinear behavior of frames. The second is to
show how the proposed analysis captures lateral torsional buckling strength accurately.

5.1. Orbison’s six-story space frame ignoring lateral torsional buckling

Fig. 5 shows Orbison’s six-story space frame (Orbison, 1982). The yield strength of all members is 250
MPa (36 ksi) and Young’s modulus is 206,850 MPa (30,000 ksi). Uniform floor pressure of 4.8 kN/m2 (100
psf) is converted into equivalent concentrated loads on the top of the columns. Wind loads are simulated by
point loads of 26.7 kN (6 kips) in the Y -direction at every beam-column joints.

Fig. 5. Six-story space frame.
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The load–displacement results calculated by the proposed analysis compare well with those of Liew and
Tang’s (considering shear deformations) and Orbison’s (ignoring shear deformations) results (Tables 1 and
2, and Fig. 6). The ratios of load carrying capacities (calculated from the proposed analysis) over the
applied loads are 2.057 and 2.066. These values are nearly equivalent to 2.062 and 2.059 calculated by Liew
and Tang and Orbison, respectively.

5.2. Single-story frame comprising lateral torsional buckling

Fig. 7 shows a single-bay single-story space frame. The stress–strain relationship is assumed to be elastic–
perfectly plastic with 250 MPa (36 ksi) yield stress and a 200,000 MPa (29,000 ksi) elastic modulus. W21�
44 section is used. The vertical and horizontal loads are applied simultaneously.

Table 1

Result of analysis considering shear deformation

Method Proposed Liew’s

Plastic strength surface LRFD Orbison Orbison

Ultimate load factor 1.990 2.057 2.062

Displacement at A in Y -direction 208 mm 219 mm 250 mm

Table 2

Result of analysis ignoring shear deformation

Method Proposed Orbison’s

Plastic strength surface LRFD Orbison Orbison

Ultimate load factor 1.997 2.066 2.059

Displacement at A in Y -direction 199 mm 208 mm 247 mm

Fig. 6. Comparison of load–displacement of six-story space frame.
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The proposed analysis is carried out. When the applied load reaches 36.88 kN (8.29 kips), element (1)
fails by lateral torsional buckling. At that moment, the member forces of element (1) are P ¼ 23:77 kN
(5.34 kips), My ¼ 12:17 kNm (107.7 in. k), and Mz ¼ 94:82 kNm (839.2 in. k). The unit value calculated by
using Eqs. (13a) and (13b) is 1.00048. Thus, it is verified the proposed analysis can capture lateral torsional
buckling strength accurately.
The additional loads can be sustained until the whole structural system encounters a limit state. The

frame collapses when the applied load P get to 40.21 kN (9.04 kips). Additional loads of 16.44 kN (3.70
kips) are carried by the structural system after lateral torsional buckling occurs at element (1). It is the
benefit of the proposed second-order plastic-hinge analysis allowing inelastic force redistribution.

6. Case study

A three-dimensional, one-bay, two-story frame was selected for the case study. Fig. 8 shows a sidesway
uninhibited frame subjected to combined lateral and vertical loads. The stress–strain relationship was

Fig. 8. 3-D, one-bay, two-story frame.

Fig. 7. 3-D, single-bay, single-story frame.
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assumed to be elastic–perfectly plastic with a 250 Mpa (36 ksi) yield stress and a 200,000 Mpa (29,000 ksi)
elastic modulus. W21� 44 was used for all the members. Out-of-plumbness of H/500 was explicitly mod-
eled. Two analyses are compared in this case study: the proposed and the conventional 3-D second-order
plastic-hinge analysis.
In the proposed analysis, the structure collapsed by the lateral torsional buckling of elements (1)–(4b) in

sequence. The load-carrying capacity Pu in term of applied load of the structural system was evaluated to be
67.57 kN (15.18 kips). If lateral torsional buckling was ignored, the frame failed by flexural buckling. The
load-carrying capacity Pu of the structural system was calculated to be 83.36 kN (18.7 kips). As a result,
the conventional analysis overpredict the load-carrying capacity of the frame by 1.2 times. The vertical
load–displacements of the proposed and conventional analysis regarding at nodal point A are compared in
Fig. 9.
The proposed analysis predicts reasonably well the degradation of flexural strength caused by lateral

torsional buckling. The load-carrying capacity determined by the proposed in the case study is directly
evaluated through the analysis, so separated member capacity checks encompassed by the specification
equations are not required. As a result, the proposed method is time effective in design process. The
proposed analysis captures the limit state strength and stability of the structural system including its in-
dividual members, while the current LRFD and ASD method evaluate the strength of the individual
member only. As a result, the proposed method can capture factor of safety for the whole structure system.

7. Conclusions

Second-order plastic-hinge analysis accounting for the effect of lateral torsional buckling has been de-
veloped. The conclusions of this study are as follows:

1. The proposed method appropriately traces the inelastic nonlinear behavior including lateral torsional
buckling effect.

2. The error of the proposed analysis are less than 1% when compared with the other analyses and LRFD
results.

Fig. 9. Load–displacements of 3-D one-bay, two-story frame.
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3. When lateral torsional buckling effect is ignored for the case study, the analysis overestimates the
strength by more than 1.2 times. Thus, lateral torsional buckling is a very crucial element to be consid-
ered in 3-D second-order plastic-hinge analysis.

4. Compared to LRFD and ASD, the proposed method provides more information on structural behavior
through a direct second-order plastic-hinge analysis of the entire system.

5. The proposed analysis can capture factor of safety for the structural system. It is more advanced than the
current LRFD and ASD evaluating the strength of the individual members only.

6. The proposed analysis can be used in lieu of costly plastic-zone analysis, and it can be a powerful tool for
use in daily design.
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